
HOWTO Use SoundForge CVS for
Snitz Forums 2000

by Pierre Gorissen

HOWTO Use SoundForge CVS for Snitz Forums 2000
by Pierre Gorissen

This is a short HOWTO on how to use CVS on SourceForge. The example is made for the developers of Snitz
Forums 2000, but should also be applicable for others using Windows and SourceForge.

Table of Contents

1 Introduction ... 1
About this HOWTO .. 1
Who should read this HOWTO .. 1
Steps to take .. 1

If you are a SourceForge/Snitz developer ... 1
If you are NOT a SourceForge/Snitz developer .. 1

2 Installation .. 2
Before you start .. 2

Lookup the SourceForge data .. 2
Create a root-directory ... 2

Installing WinCVS ... 2
Downloading ... 2
Setup .. 2

Installing SSH ... 3
Downloading ... 3
Setup .. 3
Generate a SSH public key .. 6
Configure Sourceforge.net .. 6
Configure WinCVS/SSH ... 7
Want to know more about SSH? ... 8

Installing CsDiff ... 8
Downloading ... 8
Setup .. 8
Configure WinCVS/CsDiff ... 8

Final steps ... 9
3 Basic Functions ... 10

More detailed information .. 10
Setting up a new repository .. 10
Checking out an existing module ... 10
Comparing changes .. 11

Between different versions on the server .. 11
Between you local copy and the one on the server ... 12

Commit changes ... 12
Working together .. 14

Problem? .. 14
Editing the same file at the same time ... 14
Editing / Watching / Locking .. 15

Tags / Branches .. 17
Tagging a module .. 17
Viewing tags and branches in WinCVS .. 17
Retrieving an older version/tag ... 18

4 Copyright .. 21

Chapter 1. Introduction

About this HOWTO
This is a short HOWTO on how to use CVS on SourceForge. The example is made for the develop-
ers of Snitz Forums 2000, but should also be applicable for others using Windows and SourceForge.

This is a first version. Though the info is correct, it is not completed yet.

Who should read this HOWTO
tbd....

Steps to take

If you are a SourceForge/Snitz developer

You're a SourceForge/Snitz developer if you have a developer account on the sf2k project at Source-
Forge. If you don't have an account there, you still can be a development team member at the Snitz
support site at http://forum.snitz.com/, those two accounts are not linked.

First thing you need to do is to read the installation chapter. It explains what to install and how to in-
stall that.

After that, you need to create a new repository and checkout the existing code on the site. How you
do that is explained in the basic functions chapter.

If you are NOT a SourceForge/Snitz developer

Even if you do not have a developer account, CVS can be usefull to you. You need a bit less soft-
ware and setup though.

tbd.....

Chapter 1. Introduction

1

Chapter 2. Installation
Understanding how CVS works is easy once you've got all the software setup. You'll find a lot of
HOWTO's concerning this, but most of them (also) have Linux in mind. And that can get very con-
fusing from time to time. To get started you need to have three applications: a CVS client to upload
and download the files, a SSH client for the secure connection and preferably something to check
out the differences between versions of files.

Before you start
Before you start installing the needed applications, you have to make a few preparations:

Lookup the SourceForge data

If you are a developer using a project on SourceForge, then you need to know your SourceForge
username, your password and the exact projectname of the project on SourceForge where you are a
developer.

Create a root-directory

WinCVS needs a place to store the files you're going to check-out and edit. This is called the CVS-
Root directory. You can use any (empty) directory on your pc for that. I used d:\cvsroot\ as
root-directory

• Create a root-directory, i.e. d:\cvsroot\

Installing WinCVS

Downloading

I downloaded WinCVS version 1.2 from the WinCVS [http://www.wincvs.org/download.html]
website. You can choose a ftp mirrorsite that is close to your location for the 3,53 MB download or
just use the Sourceforge downloadlink
[http://sourceforge.net/project/showfiles.php?group_id=10072].

I stayed away from the 1.3 betas, since they are betas afterall, even though the version 1.2 is rela-
tively old, from February 2001). Please let me know if I really am missing out on some great fea-
tures there.

Setup

First setup of WinCVS is fairly easy. You'll have to unzip the package first before you can run
setup.exe. During setup, just keep on clicking on the Next button and use the default setting pro-
vided by the setup program. After setup has finished you have to restart your computer.

After you restarted your computer you'll find WinCVS using Start > Programs > GNU > WinCvs
1.2 > WinCvs

Chapter 2. Installation

2

http://www.wincvs.org/download.html
http://sourceforge.net/project/showfiles.php?group_id=10072
http://sourceforge.net/project/showfiles.php?group_id=10072

• Start WinCVS to see if it installed ok

WinCVS

When you first run WinCVS it show a Startup tip. If you click Close it will open the WinCVS Pref-
erences dialog box where you need to setup things like the CVSRoot. Leave these settings for now
and exit WinCVS. You'll first have to setup the SSH client.

Installing SSH

Downloading

To install SSH we're going to use the SFSetup tool that is being provided by SourceForge. You can
find the link to it on the SourceForge Setup page [http://sfsetup.sourceforge.net]. At the time of writ-
ing this, version 1.2 was the most current, so I used that one.

Setup

For the setup tool to work, you'll need to know you SourceForge username and the projectname.

• Download setup.zip

• Unpack it

• Read the README.TXT

Chapter 2. Installation

3

http://sfsetup.sourceforge.net
http://sfsetup.sourceforge.net
http://sfsetup.sourceforge.net

• Run the program

• Click on Proceed> at the first screen

The second screen displays what setup stages you can have the tool perform for you:

If everything is ok, all three stages of the setup process are selected.

• Leave it that way and click on Proceed >

• Select a directory to install SSH in. The suggested directory c:\ssh will do, so just click on Pro-
ceed>

The next screen asks (again) for the SSH installation directory, your home directory and you user-
name:

Chapter 2. Installation

4

If you took my advise and didn't change the installation directory, you can leave both the SSH in-
stallation directory and the home directory unchanged here also. If you did change it, you'll have to
change both entries here also.

• Change the default SourceForge user name to your own SourceForge username.

• Click on Proceed> again

The setuptool now asks for the name of the project you want the set up, you username (again) and
the root-directory you created to store the files in.

• Enter the name of the project you want to set up

• Leave you username like it is (assuming it still is the same)

• Enter the root-directory you created before

• Click on Proceed>

SourceForge Setup is now ready for installation.

• Click on the Start button

After Setup has been completed you need to restart your computer.

• Restart your computer

BTW, if you like the setup tool, Michael Hearn [mailto:mhearn@subdimension.com], who created it

Chapter 2. Installation

5

mailto:mhearn@subdimension.com
mailto:mhearn@subdimension.com

would appreciate your feedback on it!

Generate a SSH public key

Generating a SSH keyset allows you to use WinCVS without having to provide your password for
each single action. You have to goto the DOS-prompt to do that.

• In Windows select: Start > Run > Command to get a DOS-prompt

• Goto the directory where you installed SSH

• Create a subfolder named .ssh (starting with a dot !)

Note

You can't create the .ssh folder from within Windows, you need to do it from the command
promgt. The keyset gets stored in this folder.

• Run the ssh-keygen command: ssh-keygen -C sf2k.sourceforge.net

• When asked for the file to save the key to, just press RETURN

• When asked for the passphrase, and the confirmation of that passphrase do the same, so just
press RETURN twice

The output for this process should look something like this:

C:\ssh>md .ssh
C:\ssh>ssh-keygen -C sf2k.sourceforge.net
Initializing random number generator...
Generating p:++ (distance 698)
Generating q:++ (distance 188)
Computing the keys...
Testing the keys...
Key generation complete.
Enter file in which to save the key ($HOME/.ssh/identity):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in c:\SSH/.ssh/identity.
Your public key is: 102433677831289340244745550388170335659674969791021549506223689907201003558365
68521100878488679990267204264274988350400643854310295129892779398155471827652141
62591487460218665918868192222993293889477338393645885656196801995332971995232956
7286827545497770470796469575894213883916103515692590367902068410229388065241
sf2 k.sourceforge.net
Your public key has been saved in c:\SSH/.ssh/identity.pub
C:\ssh>

Your C:\ssh\.ssh directory should now hold at least the files identity, identity.pub and random_seed

Configure Sourceforge.net

Next thing to do is to tell the server at Sourceforge.net what you public key is.

Chapter 2. Installation

6

• Logon to Sourceforge.net

• Goto your Account maintenance page

• Scroll down to the "Shell account information" part of the page

• Select to edit you SSH key

You now get a page with a textbox. Here you can upload you public key.

• Open you identity.pub file in a texteditor

• Select the entire public key

• Copy and paste the key into the textbox on SourceForge

• Click on update (two times)

It takes about 6 hours before the key is operational. So until then, it won't work yet. Leaves us some
time to configure WinCVS for SSH.

Configure WinCVS/SSH

WinCVS needs to know where to find the public key you just generated and what it needs to do to
logon. If SFSetup has done its work, most should allready have been added, but we'll check it to be
sure.

• Start WinCVS

• Select Admin > Preferences

• The tab General should be selected by default

• The CVSROOT should allready have been added by the SFSetup tool.

The format for the cvsroot is:
<Username>@cvs.<Projectname>.Sourceforge.net:/cvsroot/<Projectname>

• Authentication should be set to SSH server

The checkbox in front of RSA identity should be checked and the keyfile textbox should point to
you identity file

• Use version should point to cvs 1.10(Standard)

• Click the OK button to apply the setting
The settings should look like this:

Chapter 2. Installation

7

Want to know more about SSH?

I'm not going into the details about SSH in this HOWTO, but if you want to know more, take a look
at this documentation page
[http://sourceforge.net/docman/display_doc.php?docid=761&group_id=1] at SourceForge.

Installing CsDiff

Downloading

CsDiff is used as an external program to display the difference between different versions of a file.
You can use it to find the changes that were made. There are a couple of (free) programs you can
use, I used CsDiff version 2.5 [http://www.componentsoftware.com/csdiff/intro.htm]. It is a free
tool and it worked for me. You can download it from the ComponentSoftware website
[http://www.componentsoftware.com/csdiff/dlcsdiff.htm].

• Download CsDiff from the ComponentSoftware website
[http://www.componentsoftware.com/csdiff/dlcsdiff.htm]

Setup

No real setup needed, just unzip the files to a directory.

Configure WinCVS/CsDiff

You need to tell WinCVS were it can find CsDiff.

Chapter 2. Installation

8

http://sourceforge.net/docman/display_doc.php?docid=761&group_id=1
http://sourceforge.net/docman/display_doc.php?docid=761&group_id=1
http://www.componentsoftware.com/csdiff/intro.htm
http://www.componentsoftware.com/csdiff/intro.htm
http://www.componentsoftware.com/csdiff/intro.htm
http://www.componentsoftware.com/csdiff/dlcsdiff.htm
http://www.componentsoftware.com/csdiff/dlcsdiff.htm
http://www.componentsoftware.com/csdiff/dlcsdiff.htm
http://www.componentsoftware.com/csdiff/dlcsdiff.htm

• Start WinCVS

• Select Admin > Preferences

• Select tab WinCvs

• Check the box in front of "external diff program"

• Click on the browse button and select the CsDiff program

• Click on the OK button to apply the setting

You've now configured CsDiff

Final steps
The software is now ready to be used. Next thing to do is to create a new repository and checkout
the code that allready is on the server.

How you can do that is explained in the chapter about Basic Functions.

Chapter 2. Installation

9

Chapter 3. Basic Functions

More detailed information
For more indepth information about using CVS take a look here a this great manual about CVS
[http://www.loria.fr/~molli/cvs/doc/cvs_toc.html]. There is another great resource dedicated to CVS
[http://www.devguy.com/fp/cfgmgmt/cvs/]on the Devguy's website, and of course on the WinCvs
[http://www.wincvs.org/doc.html] site itself.

Two other sites that might be interesting: Info about the CVS-Concurrent Version System
[http://www.opensource.apple.com/tools/cvs/cederquist/cvs_toc.html] and CVS Best practices
[http://www.linuxdoc.org/REF/CVS-BestPractices/html/index.html]

Most information you'll find isn't written for WinCVS, but for command line CVS clients. That is
no problem since WinCVS also has a command line window.

You can see the command come by in the command-window, and any CVS command you type here
gets executed also.

Setting up a new repository
You only have to setup a new repository if you are starting with a fresh project and nobody has up-
loaded files there before. With the Snitz Forums 2000 project that is not the case, so there is no need
to do that here. If you want to find out how to start a project from scratch including setting up a new
repository see the short tutorial [http://www.loria.fr/~molli/cvs/doc/cvs_3.html#SEC37] .

Checking out an existing module
If you want to check out an existing module for the first time. You have to know what the name of
that module is.

Tip

Chapter 3. Basic Functions

10

http://www.loria.fr/~molli/cvs/doc/cvs_toc.html
http://www.loria.fr/~molli/cvs/doc/cvs_toc.html
http://www.loria.fr/~molli/cvs/doc/cvs_toc.html
http://www.devguy.com/fp/cfgmgmt/cvs/
http://www.devguy.com/fp/cfgmgmt/cvs/
http://www.devguy.com/fp/cfgmgmt/cvs/
http://www.devguy.com/fp/cfgmgmt/cvs/
http://www.devguy.com/fp/cfgmgmt/cvs/
http://www.devguy.com/fp/cfgmgmt/cvs/
http://www.wincvs.org/doc.html
http://www.opensource.apple.com/tools/cvs/cederquist/cvs_toc.html
http://www.opensource.apple.com/tools/cvs/cederquist/cvs_toc.html
http://www.opensource.apple.com/tools/cvs/cederquist/cvs_toc.html
http://www.opensource.apple.com/tools/cvs/cederquist/cvs_toc.html
http://www.opensource.apple.com/tools/cvs/cederquist/cvs_toc.html
http://www.opensource.apple.com/tools/cvs/cederquist/cvs_toc.html
http://www.linuxdoc.org/REF/CVS-BestPractices/html/index.html
http://www.linuxdoc.org/REF/CVS-BestPractices/html/index.html
http://www.linuxdoc.org/REF/CVS-BestPractices/html/index.html
http://www.loria.fr/~molli/cvs/doc/cvs_3.html#SEC37

I found that by using ./ as name for the module it checked out all existing modules on the
server. You don't want to do that is you on the other end of a plain phone-line and the
repository on the server is huge, but it is a fast way of getting the complete contents.

We're only going to retrieve the files for the module named Version_4:

• Startup WinCVS

• Select Create > Checkout Module

• As modulename enter Version_4

When WinCVS is finished, you should have a copy of all the files of Version_4 in you cvsroot di-
rectory.

Your screen probably looks slightly different from the above screendump since I downloaded all the
modules that were in the Snitz repository at the time of writing. Note the revision numbers next to
the filenames of the Version_4 modules. Those probably have changed also by the time you do this.

The files with revision number 1.1.1 are new files, meaning they only got checking in once, and
haven't been changed/checked in after that. The readme.txt file has been changed and checked a
couple of times since its revision number is 1.3

Comparing changes

Between different versions on the server

Chapter 3. Basic Functions

11

Lets take the readme.txt file and see what we can find out about it.

Between you local copy and the one on the server

If there is more than one developer that can change the files, or if you are just monitoring the CVS
as a non-developer, then over time there will be differences between the version of a file you have
stored locally and the ones on the server. You can review those differences also.

• Select Query > Diff selection

• Click on OK

But heay, nothing happened, no messages, nothing, that can't be right ?

Well if you followed this HOWTO step by step that is what should have happened, and you did get
a messages BTW, it said:

cvs -q update -p readme.txt (in directory D:\cvsroot\Version_4\)
*****CVS exited normally with code 0*****

These two lines were the confirmation that the command got executed and the the result was empty,
if everything goes as expected CVS exits wit code 0 (code 1 means that there has been an error).

And of course you weren't really expecting differences between your copy of the file and the one on
the server with the same revision, since it was only a couple of minutes ago that you downloaded a
fresh copy and you hadn't changed it yet.

If you had changed the file in those couple of minutes, then both the copy on the server and your lo-
cal copy would have been opened in CsDifft so you could look at the changes.

Commit changes
How does a developer make changes to a file on the server?

Well first the file has to be edited locally of course. This can be done with his or her favorite editor.
Just open the file that is in the repository in cvsroot, edit it and save it. WinCVS doesn't have to be
running while the file is being edited. When you've saved the file back into the repository and
startup WinCVS you can see that the file has been changed:

Chapter 3. Basic Functions

12

The icon in front of the changed file now has a different color (red). But, the revision number and/or
the file date in WinCVS haven't changed yet. That is because the changes still are only local. To get
the changed file on the server we have to commit the changes.

• Select Modify > Commit Selection

• Enter a description of the changes made to the file

• Click on OK

You can read along with WinCVS by looking at the command-window:

Chapter 3. Basic Functions

13

cvs -q commit -m "changed the copyright information because of newyear" readme.txt (in directory D:\cvsroot\Version_4\)
Checking in readme.txt;
/cvsroot/sf2k/Version_4/readme.txt,v <-- readme.txt
new revision: 1.3.4.1; previous revision: 1.3
done

*****CVS exited normally with code 0*****

Working together

Problem?

If more than one person can edit a file, you're in for some problems. Issues like, "what if person A
and B edit the same file at the same time and then commit their changes, what version will eventu-
ally be stored on the server" need to be resolved.

Editing the same file at the same time

CVS handles the problem of editing the same file at the same time for us.

Lets say person A and person B are editing the same file readme.txt revision 1.4. When person A is
ready he commits the changes. The revision gets changed to 1.5 because of that. Person B, not
knowing that person A edited the file, tries to commit his changes only a few minutes after person
A, and gets an error:

cvs server: Up-to-date check failed for 'readme.txt'
cvs [server aborted]: correct above errors first!

WinCVS has "seen" that the revision 1.4 wasn't the most recent anymore, since the server has a revi-
sion 1.5 of file readme.txt.

Person B now selects Modify > Update Selection in WinCVS, and sees this output:

RCS file: /cvsroot/sf2k/Version_4/readme.txt,v
retrieving revision 1.4
retrieving revision 1.5
Merging differences between 1.4 and 1.5 into readme.txt
rcsmerge: warning: conflicts during merge
cvs server: conflicts found in readme.txt
C readme.txt

*****CVS exited normally with code 0*****

The conflict is no error (CVS exited normally), but something that has to be resolved. The fact that
there is a conflict is indicated by both the status of the file and the icon that is used in WinCVS:

Chapter 3. Basic Functions

14

If you open the file you can see the conflicts indicated like this:

<<<<<<< readme.txt
text 1
=======
text 2
>>>>>>> 1.5

where "text 1" is the text like is appears in your local copy, and "text 2" is the text like it appears in
the revision (1.5) on the server.

Resolving the conflict is easy: just edit the file so that the changes are merged, and then commit the
file back to the server. The revision number then gets updated (again) so that the final revision num-
ber in this case is 1.6

If person A is smart enough to run the "update selection" command before editing the file again, he
will see the new revision 1.6, otherwise he'll get the same possible conflicts when he tries to commit
his version again.

This example shows that it is wise to update your local copy often when there are more developers
working on the same code.

Editing / Watching / Locking

In the previous section I explained what happened when two people are editing the same file. CVS
default doesn't use locking when you check out files. All developers are indicated as being editor. If
you select the option Trace > Unedit Selection you'll notice that nothing happens, you'll still be in-
dicating as editor.

Chapter 3. Basic Functions

15

To be able to use the Unedit command, you'll first have to set a "watch" on the files. You can find
out if you already have set a watch on a file by choosing:Trace > Watchers of selection.

I encountered problems when trying to set a watch on the complete directory at once in Version 1.2.
A workaround is to issue the correct command in the commandbox itself. In this case, you can set a
watch on all the files in module Version_4, including new files you might add and subdirectories
with:cvs watch add -R Version_4 and remove it again with: cvs watch remove -R Version_4.
Make sure that while issuing these commands you've got the root folder selected:

and not one of the modules, because it doesn't work with the command then either.

Now that you've set a watch on the files in the module, you can select to edit or unedit the files. First
you have to select to edit the files. To do that for all the files at ones, click on the Version_4 folder
and select: Trace > Edit Selection. After that you can select to Unedit the files by selecting: Trace
> Unedit Selection. Others can see who is editing a file by selecting Trace > Edtors of selection .

This indication doesn't prevent others from editing and updating the file while you are editing it.

To prevent that you'll have to lock the file. You select Trace > Lock Selection to lock the file and
Trace > Unlock Selection to unlock it again.

When a file is locked, other developers can still edit their local copy of the file, but can't commit the
changes they made to the server as long as you have locked the file. Locking too many files can also
cause problems because there is no visual hint for the other developers that a file is locked, not even
after updating the local files with the ones from the server (where the locking information also is
kept).

There are a couple of ways to find out if a file has has been locked: 1) try to lock it yourself, you'll
receive an errormessage if someone else already has locked it, or 2) Select Query > Log Selection.
The list you can see coming by also contains the locking information.

Chapter 3. Basic Functions

16

Tags / Branches

Tagging a module

CVS automatically adds revision numbers to files when you check them in. But it is also possible to
tag files or sets of files with your own label. That makes it possible to tag a current set of files with
many different revisions as "beta_4" of "stableversion". That way you can easily go back to an older
set of files by simple checking out the files with the same tag. So even if you already have pro-
gressed from beta_4 to beta_10, you'll still be able to compare the changes of a file or set of files be-
tween those two versions. You can also make a new branch starting at each tag. You add a tag to a
complete module this way:

• Select Create > Create a tag by module

• Enter the tag-name (i.e. beta_5)

• Enter the module to be tagged (i.e. Version_4)

• Click OK

Viewing tags and branches in WinCVS

You can view the revisions and tags of a file graphical in WinCVS by rightclicking the file and se-
lecting the Graph Selection command.

Depending on the changes made to the file and the tags attached to it, you'll see something like this:

Hmm, that doesn't look really interesting. The file search.asp has a couple of tags (Snitz, start,
beta_5, beta_4) and only one revision 1.1.1.1 associated with it. This means this file has been
checked in and hasn't been changed since. If we look at a bit more interesting file, we see this:

Chapter 3. Basic Functions

17

Now that is more like it. You can see that readme.txt currently has revision number 1.7

The tag beta_4 is associated with revision number 1.3 and tag beta_5 is attached to revision number
1.7

Between those two tags, the file has been checked in a couple of times (revisions 1.4, 1.5 and 1.6)

If I want to know the changes made to the beta_5 version of the file (revision 1.7) compared to the
beta_4 version (revision 1.3) I can compare them:

• press the SHIFT button

• click on both files to select them

• select Graph > Diff Selected

Retrieving an older version/tag

Because I tagged de module with the tag "beta_4" I can select to check out all the files that have that
tag.

That means that I don't get files that don't have that tag (because the are newer), and that I get the re-
vision of the file that belongs to that tag. In case of readme.txt that means I get revision 1.3, even
though the current revision is 1.7

You probably won't do this with beta versions, but if instead of tags beta_4 and beta_5 you had tags
for version 4.1 and version 4.2 and you discovered that there was an error in the readme.txt file. The
error had been introduced in revision 1.2 and was still present in revision 1.7.

One way of fixing it would be to open the revision 1.7 file, fix the error there, save the file, commit
the changes (CVS increases the revision number to 1.8) and release a version 4.2.1 which uses

Chapter 3. Basic Functions

18

readme.txt with revision number 1.8 of the readme.txt file. No problem with that.

But what about the 4.1 version ? That version also has the error in readme.txt, but doesn't get up-
dated. Let's fix that version also.

First, since we're going to retrieve the revisions that belonged to the old tag, then we're going to
change the file with the error and then we'll upload the changed file back to the server again and
have a look at how that affected our current version. I'll be showing this using the beta_4 and beta_5
examples:

• Select Create > Checkout module

• On the Checkout settings tab, check the 'override' option and enter a new name for the module:
'beta_4'

• On the Checkout options tab, check 'By revision/tag/branch' and enter the tagname we want to
checkout: 'beta_4'

• Click OK

Now, all the files that have tag beta_4 get checked out into a new module that we also called beta_4.
Because we didn't check them out to the default Version_4 module, that module stays unchanged.
This way we can still keep on working on the current versions of the files while we are fixing the
bug in the beta_4 version.

We can now go into the beta_4 module, open the readme.txt (with revision number 1.3) and fix the
error. Then we commit the changes to the server. The revision number gets updated automatically
again and is changed to 1.3.2.1

If we go back to our Version_4 module we can see that the revision of readme.txt we had there
hasn't been altered, nor has the revision number changed. We can see what did happen if we graph
the file again:

The modification we made to the file have been added as a branch to the beta_4 tag. Next time if
someone checks out all the beta_4 tagged files, they will get the revision 1.3.2.1 of readme.txt

Chapter 3. Basic Functions

19

If someone checks out the most current version of readme.txt or the beta_5 tagged files, they will
still get the 1.7 revision.

Chapter 3. Basic Functions

20

Chapter 4. Copyright
Copyright (c) 2001 by Pierre Gorissen

This HOWTO document may be reproduced and distributed in whole or in part, in any medium
physical or electronic, as long as this copyright notice is retained on all copies. Commercial redistri-
bution is allowed and encouraged; however, the author would like to be notified of any such distri-
butions.

All translations, derivative works, or aggregate works incorporating this document must be covered
under this copyright notice. That is, you may not produce a derivative work from this HOWTO and
impose additional restrictions on its distribution. Exceptions to these rules may be granted under
certain conditions; please contact the author at the address given below.

In short, I wish to promote dissemination of this information through as many channels as possible.
However, I do wish to retain copyright on the HOWTO document, and would like to be notified of
any plans to redistribute the HOWTO.

If you have questions, please contact me, at HOWTO@PGorissen.com
[mailto:HOWTO@PGorissen.com] via email.

Visit Snitz Forums 2000 on the Web at http://forum.snitz.com/ [http://forum.snitz.com/].

Chapter 4. Copyright

21

mailto:HOWTO@PGorissen.com
http://forum.snitz.com/

	HOWTO Use SoundForge CVS for Snitz Forums 2000
	1 Introduction
	About this HOWTO
	Who should read this HOWTO
	Steps to take
	If you are a SourceForge/Snitz developer
	If you are NOT a SourceForge/Snitz developer

	2 Installation
	Before you start
	Lookup the SourceForge data
	Create a root-directory

	Installing WinCVS
	Downloading
	Setup

	Installing SSH
	Downloading
	Setup
	Generate a SSH public key
	Configure Sourceforge.net
	Configure WinCVS/SSH
	Want to know more about SSH?

	Installing CsDiff
	Downloading
	Setup
	Configure WinCVS/CsDiff

	Final steps

	3 Basic Functions
	More detailed information
	Setting up a new repository
	Checking out an existing module
	Comparing changes
	Between different versions on the server
	Between you local copy and the one on the server

	Commit changes
	Working together
	Problem?
	Editing the same file at the same time
	Editing / Watching / Locking

	 Tags / Branches
	Tagging a module
	Viewing tags and branches in WinCVS
	Retrieving an older version/tag

	4 Copyright

